GEOMORPHIC INSIGHT FROM HIGH RESOLUTION TOPOGRAPHY: IS IT REPRODUCIBLE?

STUART W. D. GRIEVE, UNIVERSITY COLLEGE LONDON

Simon M. Mudd, University of Edinburgh

Martin D. Hurst, University of Glasgow

OVERVIEW

OVERVIEW

1. HOW LONG IS A HILLSLOPE?

OVERVIEW

- 1. HOW LONG IS A HILLSLOPE?
- 2. REPRODUCIBLE TOPOGRAPHIC ANALYSIS

WHAT CAN TOPOGRAPHY TELL US QUANTITATIVELY ABOUT PROCESS?

WHAT CAN TOPOGRAPHY TELL US QUANTITATIVELY ABOUT PROCESS?

Volume of sediment transported on a hillslope per unit area in a period of time

Sediment flux controls:

Volume of sediment transported on a hillslope per unit area in a period of time

Sediment flux controls:

Geometry of hillslopes

Volume of sediment transported on a hillslope per unit area in a period of time

Sediment flux controls:

Geometry of hillslopes

Landscape response to climate and tectonic forcing

Volume of sediment transported on a hillslope per unit area in a period of time

Sediment flux controls:

Geometry of hillslopes

Landscape response to climate and tectonic forcing

Landscape evolution modelling

CONSTRAINING LINEAR FLUX

CONSTRAINING LINEAR FLUX

CONSTRAINING LINEAR FLUX

CONSTRAINING NONLINEAR FLUX

CONSTRAINING NONLINEAR FLUX

CONSTRAINING NONLINEAR FLUX

PREDICTIONS OF THE RELIEF STRUCTURE OF LANDSCAPES

PREDICTIONS OF THE RELIEF STRUCTURE OF LANDSCAPES

PREDICTIONS OF THE RELIEF STRUCTURE OF LANDSCAPES

IF WE CAN MEASURE HILLSLOPE LENGTH AND RELIEF WE CAN LOOK FOR THIS RELATIONSHIP ACROSS A LANDSCAPE

MEASURING HILLSLOPE LENGTH AND RELIEF

Measure hillslope length as a flow path

Connect ridges to channels

Get hilltop to channel relief

Allows us to test the relationship between relief and hillslope length

480	450	550
470	430	445
475	420	400

480	450	550
470	430	445
475	420	400

480	450	550
470	430	445
475	420	400

480	450	550
470	430	445
475	420	400

100	150	20
280	170	70
350	120	90

100	150	20
280	170	70
350	120	90

100	150	20
280	170	70
350	120	90

MEASURING HILLSLOPE LENGTH AND RELIEF

4869000

Northing (m)

4867000

Oregon Coast Range, Oregon

439000 441000 Easting (*m*)

Coweeta, North Carolina

Gabilan Mesa, California

Northern Sierra Nevada, California

TOPOGRAPHY IS CONSISTENT WITH NONLINEAR SEDIMENT FLUX

TOPOGRAPHY IS CONSISTENT WITH NONLINEAR SEDIMENT FLUX

TOPOGRAPHY IS CONSISTENT WITH NONLINEAR SEDIMENT FLUX

Demonstrated at a landscape scale

Can be applied anywhere

First test that relies only on topographic data

REPRODUCIBLE TOPOGRAPHIC ANALYSIS

- 1. Open data
- 2. Open methods
- 3. Open data visualisation
- 4. Open access publication

- 1. Open data
- 2. Open methods
- 3. Open data visualisation
- 4. Open access publication

TRANSPARENT METHODS AND OPEN DATA

"We calculated slope for our study area."

We all know what this means qualitatively, but how would you do it?

TRANSPARENT METHODS AND OPEN DATA

"We calculated slope for our study area."

We all know what this means qualitatively, but how would you do it?

Oregon Coast Range, Oregon

WITHOUT TRANSPARENT METHODS AND DATA SOURCES OPEN SCIENCE IS NOT POSSIBLE

WITHOUT TRANSPARENT METHODS AND DATA SOURCES OPEN SCIENCE IS NOT POSSIBLE

WITHOUT TRANSPARENT METHODS AND DATA SOURCES OPEN SCIENCE IS NOT POSSIBLE

Impacts reproducibility

Changes interpretation of results

Wastes time

OUR ORIGINAL METHODS STATEMENT:

"We calculated slope for our study area."

A BETTER METHODS STATEMENT?

"We calculated slope as the steepest descent value within an 8 cell kernel, on 1 meter resolution LiDAR data."

A BETTER METHODS STATEMENT?

"We calculated slope as the steepest descent value within an 8 cell kernel, on 1 meter resolution LiDAR data."

PATHWAYS TO OPEN METHODS

Write clearer methods sections

Make better use of supplemental information

BSG Geomorphological Techniques

Publish code

PATHWAYS TO OPEN DATA

Cite data properly, with a DOI

Put it in a stable repository

Document your data

NEW PREPRINT ARCHIVE

CONTACT CHRIS JACKSON FOR DETAILS:

@EarthArXiv

@seis_matters

c.jackson@imperial.ac.uk

THANK YOU

Interested in learning more?

Need help with software as part of your research?

Want to collaborate?

s.grieve@ucl.ac.uk

swdg.io

